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On internal fronts
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The propagation of nonlinear fronts in a channel flow of two contiguous homogeneous
fluids of different densities is considered. Each fluid layer is of finite depth. The study
is restricted to steady flows in a frame of reference moving with the front. The
full governing equations are integrated numerically. The numerical method is based
on boundary integral equation techniques. Although the propagation of waves in
two-layer fluids is a classical problem, this is the first time that fronts have been
directly computed. The limiting configuration of fronts as their amplitude increases is
discussed and shown to depend on whether the front is of elevation or of depression.

1. Introduction
An internal front is a wave motion that can arise in the flow of several contiguous

homogeneous fluids of different densities. In the ocean for example, differences in
density can be associated with differences in temperature, salinity, or amount of
suspension. Internal fronts (also called bores and surges) have been observed in
rivers, lakes (Loch Ness for example), fjords (Trondheim fjord for example), oceans
(off the coast of California for example), and their profiles can be displayed by echo-
sounders. The presence of a sill near the mouth of a river or fjord may be responsible
for the formation of an internal bore. This is the case for example in Knight Inlet,
British Columbia, and through the Straits of Gibraltar. Internal bores are usually
generated in a comparatively thin layer of water which lies above a deeper denser
layer, so the front is expected to appear as a wave of depression (Simpson 1997).

The focus of this paper is fronts of permanent form. In a frame of reference moving
with it, the front can be viewed as a steady interfacial wave (see figure 1). The flow
is uniform upstream and downstream. Here we consider the simplest model with just
two layers of different densities bounded above and below by horizontal walls. The
velocity of the uniform flow far upstream is assumed to be the same in each layer
and is denoted by U . Besides reducing the number of independent parameters of the
problem by one, this restriction is needed when dealing with fronts of permanent
form travelling downstream into fluids otherwise at rest. The upstream thicknesses
of the upper and lower layers are, respectively, h2 and h1. In this paper, quantities
related to the upper fluid layer are indexed with the subscript 2, while those related
to the lower fluid layer are indexed with the subscript 1.

In the absence of an obstacle in the channel, two uniforms flows are said to be
conjugate if the following four quantities are all conserved: mass in the bottom fluid
layer, mass in the upper layer, total momentum and total energy (Benjamin 1966).
In general, for arbitrary values of U , h1 and h2, conjugate flows do not exist. The
reason is that although there are four conserved quantities leading to four equations
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for four unknowns (the heights and the uniform velocities downstream), there is the
additional constraint that the total height of the channel is fixed. Let the upstream
Froude number be defined by

F =
U√
gh1

, (1.1)

where g is the acceleration due to gravity. The density ratio ρ = ρ2/ρ1 is assumed to
be less than 1 (stable configuration). The thickness ratio h2/h1 is denoted by β . It is
well-known (see e.g. Laget & Dias 1997 Appendix A) that a necessary condition for
fronts to exist is that the square of the upstream Froude number (1.1) equal

F 2
front =

(1 + β)(1 − √
ρ)

1 +
√

ρ
. (1.2)

Moreover fronts necessarily satisfy the following properties:(
U2

U1

)
downstream

=
β

√
ρ

,

(
h2

h1

)
downstream

=
√

ρ. (1.3)

The value

β =
√

ρ (1.4)

is a critical value for fronts: if β <
√

ρ, the front appears as a wave of depression; if
β >

√
ρ, the front appears as a wave of elevation. If β =

√
ρ, there is no front.

Internal fronts are closely related to internal solitary waves. Such waves have been
studied analytically, numerically and experimentally. Amick & Turner (1989) and
Mielke (1995) used the centre manifold approach to prove rigorously the existence of
small-amplitude solitary waves and fronts. They showed that solitary waves bifurcate
from a uniform flow at F = Fbifurcation, where

F 2
bifurcation =

β(1 − ρ)

β + ρ
, (1.5)

and are characterized by a Froude number larger than Fbifurcation. Whether they are
of elevation or depression depends on the ratio of layer depths. As for fronts, the
bifurcating solitary waves are of depression if β <

√
ρ and of elevation if β >

√
ρ.

The Froude numbers (1.2) and (1.5) are precisely equal when β =
√

ρ. Makarenko
(1992) used bifurcation theory to prove the existence of fronts. In addition to these
local results, global results have been obtained by Amick & Turner (1986). Their
analytical results predict either the broadening or the overhanging of solitary waves
as their speed increases but cannot predict which one will occur. The question of
how large internal waves can be is of importance for example for oil rig construction
in marginal seas. The precise nature of limiting internal solitary waves remains an
open problem. Accurate nonlinear interfacial solitary waves (or long periodic waves)
have been obtained numerically. Funakoshi & Oikawa (1986) used truncated Fourier
expansion series, Turner & Vanden-Broeck (1988) used an integrodifferential equation
formulation, Mirie & Pennell (1989) used a ninth-order perturbation expansion, Moni
& King (1995) used a generalized Schwarz–Christoffel transformation technique. All
these authors provided numerical evidence for broadening of solitary waves, and
consequently for fronts since broad solitary waves can be viewed as the superposition
of two fronts. Pullin & Grimshaw (1988) and Rus̊as & Grue (2002) used an integral
equation formulation to compute overhanging solitary waves.

Solitary waves have also been observed in laboratory conditions by several authors,
including Gavrilov (1994), Maurer, Hutter & Diebels (1996), and Michallet &



On internal fronts 147

0 5–5–10–15–20 10
x

y=1+η(x)

1 1

1 β

0

0.2

0.4

0.6

0.8

1.0

y

1+β

1+√ρ
√ρ

1+β

1+√ρ

Figure 1. Sketch of a depression front in dimensionless coordinates. The densities of the
upper and lower fluids are, respectively, ρ2 and ρ1. The density ratio ρ = ρ2/ρ1 is less than 1.
The flow is uniform upstream with the same uniform velocity −1 in both layers. The thickness
of the bottom layer is 1 upstream and (1 + β)/(1 +

√
ρ) downstream. The thickness of the

upper layer is β upstream and
√

ρ(1 + β)/(1 +
√

ρ) downstream. This is a computed solution
with β = 0.175, ρ = 0.9 and F given by (1.2).

Barthélemy (1998). Gavrilov (1994) also mentions laboratory observations of fronts.
Although there is analytical, numerical and experimental evidence for fronts, this is
the first time that fronts have been directly computed.

2. Formulation
A front travelling from left to right at speed U between two contiguous

incompressible inviscid fluids of different densities is considered. The fluids are
assumed to be at rest on the right-hand side. The analysis is made in a frame
of reference moving with the front so that a uniform velocity −U is superimposed
everywhere. The unit of length is the height h1. The unit of velocity is U and the
flow in dimensionless variables is sketched in figure 1. The x-axis is the bottom of
the channel. The y-axis is vertical. The flow is uniform far upstream, with the same
velocity −1 in both layers.

The flows in each layer are assumed to be potential. In dimensionless form, the
governing equations in each layer are

�φi = 0 , i = 1, 2, (2.1)

where φi is the velocity potential in layer i. Along the interface described by y =
1 + η(x) there are two kinematic conditions

∂φi

∂x

dη

dx
− ∂φi

∂y
= 0, i = 1, 2. (2.2)

Using Bernoulli’s equation in each fluid and eliminating the pressure at the interface,
one can write the dynamic condition in the form

1
2
|∇φ1|2 − 1

2
ρ|∇φ2|2 + (1 − ρ)

1

F 2
η = 1

2
(1 − ρ). (2.3)

The condition of no flow normal to the walls is given by

∂φ1

∂y
= 0 at y = 0,

∂φ2

∂y
= 0 at y = 1 + β. (2.4)
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We will show below that fronts form a two-parameter family of solutions, the two
parameters being, for example, ρ and β .

3. Linear and weakly nonlinear analysis
Given waves of the form φ1 = −x + ϕ1 and φ2 = −x + ϕ2, the linearization of

(2.1)–(2.4) results in the dispersion relation for infinitesimal waves of wavenumber k:

kF 2(tanh kβ + ρ tanh k) = (1 − ρ) tanh k tanh kβ. (3.1)

Real values for k can be found only if the Froude number (1.1) is less than Fbifurcation

(1.5). This paper deals with fronts, which are supercritical solutions (Ffront > Fbifurcation).
Through the transformation k → iλ, equation (3.1) becomes

λF 2(tan βλ + ρ tan λ) = (1 − ρ) tan λ tan βλ, (3.2)

where λ measures the exponential decay of the front upstream, i.e. the front decays
as exp(−λx) upstream.

Insight into the origin of fronts can be obtained by performing a classical
perturbation expansion for long waves (k → 0) on (2.1)–(2.4). Such an expansion
leads to the Korteweg–de Vries (KdV) equation. Since the present paper deals with
stationary solutions, only the stationary KdV equation is considered. In dimensionless
variables, it takes the form

1
6
bηxxx + 3

2
aηηx − (F − Fbifurcation)ηx = 0, (3.3)

where

a =
β2 − ρ

β(β + ρ)
Fbifurcation, b = β

(
1 + βρ

β + ρ

)
Fbifurcation. (3.4)

The scaling

x →
√

ε
x√
b
, η → 1

ε
|a|η, F − Fbifurcation = εµ (3.5)

transforms (3.3) into
1
6
ηxxx ± 3

2
ηηx − µηx = 0, (3.6)

where the plus sign is chosen if β >
√

ρ and the minus sign is chosen if β <
√

ρ.
Integrating equation (3.6) once leads to

ηxx ± 9
2
η2 − 6µη = 0, (3.7)

under the condition that the flow is uniform far upstream.
Equation (3.7) has two fixed points: η = 0 and η = ± 4

3
µ, and its solutions are

well-known. Integrating equation (3.7) once leads to

η2
x = 6µη2 ∓ 3η3 + constant. (3.8)

For µ > 0 (the case of interest in this paper), the solutions are periodic (cnoidal
waves) or homoclinic (solitary waves). The solitary waves are of elevation if β >

√
ρ

(negative cubic term in (3.8)) and of depression if β <
√

ρ (positive cubic term in
(3.8)). Note that (3.6) does not admit fronts.

Near the critical ratio of layer depths (1.4), the coefficient a of the quadratic term
ηηx is small and the cubic term η2ηx must be computed. The modified KdV equation
takes the form

1
6
bηxxx + 3

2
aηηx − 3

4
cη2ηx − (F − Fbifurcation)ηx = 0, (3.9)
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where

a =
2(β − √

ρ)
√

ρ(1 +
√

ρ)
Fbifurcation, b = (1 − √

ρ + ρ)Fbifurcation, c =
4

√
ρ

Fbifurcation. (3.10)

The scaling

x → ε
x√
b
, η → 1

ε

√
cη,

a√
c

= εe, F − Fbifurcation = ε2µ (3.11)

transforms (3.9) into
1
6
ηxxx + 3

2
eηηx − 3

4
η2ηx − µηx = 0. (3.12)

Integrating (3.12) once leads to

ηxx + 9
2
eη2 − 3

2
η3 − 6µη = 0, (3.13)

under the condition that the flow is uniform far upstream.
Solutions of equation (3.13) are well-known. If µ > (9/16)e2, it has only one fixed

point: η = 0. If µ < (9/16)e2, it has three fixed points:

η = 0, η = 3
2
e − 1

2

√
9e2 − 16µ, η = 3

2
e + 1

2

√
9e2 − 16µ. (3.14)

For µ > 0 (the case of interest in this paper), the non-trivial fixed points are positive
if e > 0 and negative if e < 0.

Integrating equation (3.13) once leads to

η2
x = 6µη2 − 3eη3 + 3

4
η4 + constant. (3.15)

Solutions of (3.15) depend on µ (that is on F −Fbifurcation) and on e (that is on β −√
ρ).

When µ > 0, the fixed point η = 0 is a saddle point. The middle fixed point is a
centre while the third fixed point is a saddle point. When 0 < µ < 1

2
e2, the bounded

solutions are qualitatively similar to those of the KdV equation. When µ = 1
2
e2, the

only bounded solution going through the origin is a front given by

η = e
[
1 + tanh

(
1
2

√
3ex

)]
. (3.16)

When µ > 1
2
e2, there is no bounded solution going through the origin. Note that the

value µ = 1
2
e2 is equivalent to F = Ffront (within the weakly nonlinear approximation).

Moreover the amplitude 2|e| of the front agrees with the conjugate flow estimates.
A summary of the weakly nonlinear results on the modified KdV equation is as

follows. Solitary waves exist for all values of the Froude number between Fbifurcation

and Ffront. They are of depression if β <
√

ρ and of elevation if β >
√

ρ. They
broaden as the Froude number increases towards Ffront. When F = Ffront, solitary
waves disappear and are replaced by fronts.

4. Numerical scheme
Our numerical procedure to integrate numerically (2.1)–(2.4) closely follows the

work of Sha & Vanden-Broeck (1993) and Dias & Vanden-Broeck (2002). In these
two papers, there was an obstacle on the bottom of the channel. Here the procedure
is simpler because there is no obstacle.

The interface is described parametrically by x = X(s) and y = Y (s), where s is the
arclength. Therefore we require

[X′(s)]2 + [Y ′(s)]2 = 1, (4.1)
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where primes denote derivatives with respect to s. We choose s = 0 at the point
x = 0, y = t on the interface (i.e. X(0) = 0, Y (0) = t). Here t is given. Typically we
chose t = 1

2
[Y (−∞) + Y (∞)]. Equation (2.3) can be rewritten as

1
2
[φ′

1(s)]
2 − 1

2
ρ[φ′

2(s)]
2 + (1 − ρ)

1

F 2
(Y (s) − 1) = 1

2
(1 − ρ). (4.2)

Following Sha & Vanden-Broeck (1993), we derive the integral equations

−π[φ′
2(s)X

′(s) − 1] =

∫ ∞

−∞

[φ′
2(σ ) − X′(σ )][Y (σ ) − Y (s)] + [X(σ ) − X(s)]Y ′(σ )

[X(σ ) − X(s)]2 + [Y (σ ) − Y (s)]2
dσ

+

∫ ∞

−∞

[φ′
2(σ ) − X′(σ )][Y (σ ) + Y (s) − 2β − 2] + [X(σ ) − X(s)]Y ′(σ )

[X(σ ) − X(s)]2 + [2β + 2 − Y (σ ) − Y (s)]2
dσ (4.3)

and

π[φ′
1(s)X

′(s) − 1] =

∫ ∞

−∞

[φ′
1(σ ) − X′(σ )][Y (σ ) − Y (s)] + [X(σ ) − X(s)]Y ′(σ )

[X(σ ) − X(s)]2 + [Y (σ ) − Y (s)]2
dσ

+

∫ ∞

−∞

[φ′
1(σ ) − X′(σ )][Y (σ ) + Y (s)] + [X(σ ) − X(s)]Y ′(σ )

[X(σ ) − X(s)]2 + [Y (σ ) + Y (s)]2
dσ. (4.4)

We note that (4.3) and (4.4) differ from equations (5) and (8) in Sha & Vanden-Broeck
(1993) because we did not assume symmetry with respect to the y-axis.

This concludes the formulation of the problem. We seek φ′
1, φ′

2, X(s) and Y (s) so
that the four equations (4.1)–(4.4) are satisfied. These equations are discretized by
following the procedure outlined in Sha & Vanden-Broeck (1993) and the resulting
algebraic equations are solved by Newton iterations. The number of independent
parameters for fronts is two. These two parameters are for example ρ and β , or ρ

and F .

5. Numerical results
The numerical scheme described in § 4 was used to compute fronts for various values

of the parameters. Most of the solutions were obtained with 200 mesh points. The
convergence of the scheme and the accuracy of the results were checked by increasing
independently the number of mesh points and the size of the computational domain.

5.1. Depression fronts (β <
√

ρ)

Our numerical computations agree qualitatively with the weakly nonlinear results
of § 3. Typical interfacial profiles with ρ = 0.4 are shown in figure 2(a) for β =
0.4, 0.2, 0.1. The value ρ = 0.4 was chosen for comparison with existing results on
broad solitary waves. A profile with ρ = 0.9 is shown in figure 1.

5.2. Limiting configuration for depression fronts

The profiles shown in figure 2(a) suggest that in the limit β going to zero (the top layer
becoming thinner and thinner) the interface will touch the top wall. This hypothesis
was tested numerically by computing directly solutions in which the upstream flow
is such that the heavy fluid occupies the whole channel. Such a solution is shown in
figure 2(b). There is in fact a one-parameter family of such solutions, the parameter
being the Froude number (1.1). But only one is the limiting configuration of the front,
the one corresponding to F = Ffront with β = 0. It gives F = (1 − √

ρ)1/2/(1 +
√

ρ)1/2.
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Figure 2. Depression fronts with ρ = 0.4. (a) β = 0.4 (dash-dotted line), β = 0.2 (dashed
line), β = 0.1 (solid line). (b) Limiting configuration β → 0. The bottom lies at y = 0 and the
top wall at y = 1 + β . The thickness of the bottom layer is (1 + β)/(1 +

√
ρ) downstream.

The governing equations for the velocity potential φ1 are

�φ1 = 0, 1
2
|∇φ1|2 + (1 − ρ)

1

F 2
η = constant. (5.1)

The solutions were obtained by the method of series truncation (see for example
Dias & Vanden-Broeck 1989). The problem is reformulated here in an intermediate
t-plane. The flow domain is mapped onto the upper half-unit disk and the complex
velocity is expanded as a Taylor series inside the unit disk. The image of the interface
is the upper half-unit disk. The image of the solid boundaries is the real diameter,
with t = −1 the image of the point where the interface touches the top wall, t = 0 the
image of infinity upstream and t = 1 the image of infinity downstream. Introducing
the complex potential f , the mapping is provided by

f =
1

π
log

[
t

(1 − t)2

]
. (5.2)

The complex velocity ζ = df/dz = u − iv, with z = x + iy, is expanded as

ζ = exp (Ω(t)) , where Ω(t) = A(1 − t)2λ/π +

∞∑
0

ant
n. (5.3)

The coefficients an and the constant A are real. The power λ is the smallest solution
of an equation similar to (3.2),

λ

F

√
1 − ρ = tan λ. (5.4)

Parameterizing the interface by t = eiσ , 0 � σ � π, and differentiating Bernoulli’s
equation in (5.1) with respect to σ leads to

uuσ + vvσ − 1

π

(
1 − ρ

F 2

) (
cos 1

2
σ

sin 1
2
σ

)
v

u2 + v2
= 0. (5.5)

This completes the reformulation of the problem. The coefficients an in (5.3) are
sought such that (5.5) is satisfied on the interface. The problem is solved numerically
by truncating the infinite series in (5.3) after (N − 1) terms. Next we introduce the N

mesh points on the interface σI = (I − 1
2
)π/N, 1 � I � N. We satisfy equation (5.5) at
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Figure 3. Elevation fronts with ρ = 0.4. (a) β = 17 (dashed line), β = 21.6 (solid line).
(b) Blow up of the overhanging region. The bottom lies at y = 0 and the top wall at y = 1+β .
The thickness of the bottom layer is (1 + β)/(1 +

√
ρ) downstream.

the mesh points. This yields N equations for the N unknowns A, a0, a1, . . . , aN−2. For
given values of F , this system of N nonlinear equations with N unknowns is solved
by Newton’s method. It can be shown that 1

2

√
1 − ρ < F <

√
1 − ρ for solutions

to exist (Benjamin 1968). The upper bound corresponds to a uniform flow while the
lower bound corresponds to a limiting configuration with a 120◦ angle (Asavanant
& Vanden-Broeck 1996). When F = Ffront, which is indeed in the admissible range,
the solution is the limit of a depression front. This limit is in agreement with
the numerical computations of Rus̊as & Grue (2002) on solitary waves (see their
figure 13b).

5.3. Elevation fronts

Our numerical computations agree qualitatively with the weakly nonlinear results of
§ 3 for small-amplitude fronts. But for large-amplitude fronts, the interface may be
overhanging. Typical profiles with ρ = 0.4 are shown in figure 3 for β = 17 and 21.6.

5.4. Limiting configuration for elevation fronts

The profiles shown in figure 3 indicate that the limiting configuration as β tends
to infinity (the top layer becomes thicker and thicker) is different from the limiting
configuration for depression fronts.

Solutions with the interface touching the bottom wall can be computed but it
can be shown that they require 1

2

√
1 − ρ/

√
ρ < F <

√
1 − ρ/

√
ρ. The upper bound

corresponds to a uniform flow while the lower bound corresponds to a limiting
configuration with a 120◦ angle. It turns out that Ffront is not in the admissible range,
unless we consider the Boussinesq limit ρ → 1 (see § 5.5). In the Boussinesq limit,
F 2

front/(1 − ρ) is equal to 1
4
(1 + β).

Our numerical computations suggest that as a branch of solutions is followed by
fixing ρ and increasing β , a maximum value of β is ultimately reached. This maximum
value of β , βmax, is in fact a turning point and the values of β start to decrease as
the branch is extended past the limiting value. The profile for β = 21.6 in figure 3 is
close to βmax. Our results are in agreement with the numerical computations of Rus̊as
& Grue (2002) on solitary waves (see their figure 11a).

5.5. Boussinesq limit

Figure 4 shows profiles corresponding to the Boussinesq limit ρ → 1. In that case
solutions exist over the whole range 0 < β < ∞ and the solutions for β = 0 and ∞



On internal fronts 153

(a)                                                                                 (b)

(c)                                                                                 (d )

11

Fluid at rest

Fluid at rest

0

0.2

0–10–20 10 20

0 5–5

0.4

0.6

0.8

1.0

y

0

0.2

0.4

0.6

0.8

1.0

y

x
0 1–1

0

0.2

0.4

0.6

0.8

1.0

x

0

2

0–10–20 10 20

4

6

8

10

Figure 4. Fronts in the Boussinesq limit (ρ → 1). (a) Depression fronts: β = 1/2 (dash-dotted
line), β = 1/11 (dashed line), β = 1/16 (solid line). (b) Elevation fronts: β = 2 (dash-dotted
line), β = 11 (dashed line), β = 16 (solid line). (c) Limiting depression front. (d) Limiting
elevation front. In (a–c), the top wall lies at y = 1 + β; in (d), the y-coordinate has been
rescaled so that the top wall lies at y = 1.

touch, respectively, the upper and lower wall. They intersect the walls with a 120◦

angle.

6. Discussion
The main conclusion is that depression fronts exist for all values of β between 0

and
√

ρ while elevation fronts exist only for values of β between
√

ρ and βmax(ρ). The
limiting configuration of depression fronts is obtained when the interface touches the
top wall. The limiting configuration of elevation fronts is not as clear. What is clear
is that overhanging develops.

The weakly nonlinear results predict a symmetry of fronts with respect to their
centre. The fully nonlinear results clearly show that it is not the case. The fronts
we computed cannot be generalized in the sense that no oscillations can appear on
the downstream part. Indeed the dispersion relation downstream is (see for example
Lamb 1932, art. 234)

kU 2
1 tanh kh2 + kU 2

2 ρ tanh kh1 = g(1 − ρ) tanh kh1 tanh kh2. (6.1)

Downstream of the front, U1, U2, h1 and h2 are known. Plugging these known values
into the dispersion relation (6.1) shows that there is no real solution for k. In other
words fronts with oscillations on the downstream part are not possible. On the
other hand, the stability of fronts is not so easily solved; they are locally subject to
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the Kelvin–Helmholtz instability downstream. However it is not known at present
whether or not the local instability can destroy the front.

This work was supported in part by EPSRC, the Leverhulme Trust and the
National Science Foundation (NSF). J.-M. V.-B. thanks the Centre National de
la Recherche Scientifique (CNRS) for sponsoring his visit to Ecole Normale Supérieure
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